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ABSTRACT  Article Information 

This study introduces an innovative approach to predictive crop 

management in precision agriculture by integrating deep 

learning with multispectral remote sensing technologies. The 

research aims to develop a framework that combines 

multispectral data from field sensors, UAVs, and satellites with a 

deep learning model based on a multimodal architecture 

incorporating adaptive transfer learning and attention 

mechanisms. Data were collected over two growing seasons and 

underwent preprocessing, vegetation feature extraction, and 

model training and validation. The proposed deep learning 

model significantly outperformed traditional machine learning 

algorithms such as Random Forest and Support Vector Machines, 

achieving up to 97.8% accuracy in crop classification. Predicted 

crop conditions and yield estimates showed a strong correlation 

with actual field data (r = 0.89; RMSE = 0.12). Field 

implementation of the predictive system indicated potential 

increases in crop yield by 18% and reductions in agricultural 

input usage by 28%. These results highlight the potential of deep 

learning and multispectral data integration to enhance decision-

making, resource efficiency, and sustainability in precision 

farming. Furthermore, the approach demonstrates strong 

scalability for different crop types and geographical regions, 

providing a solid foundation for the digital transformation of 

agriculture toward a more adaptive and sustainable food 

production system. 
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1. Introduction 

The foundation of global food security is the crucial industry of agriculture. By 

2050, there will likely be 9.7 billion people on the planet, making it imperative to 

increase agricultural output in a sustainable manner. Efforts to boost agricultural 

yields are made more difficult by a number of limitations facing conventional 

agriculture, including soil degradation, climate change, and scarce water supplies.  In 

order to maximize resource management both geographically and temporally and 

boost production and efficiency, precision agriculture has become a paradigm that 

incorporates digital technology [1]. 

Because it can offer precise and real-time plant spectrum data that represents plant 

physiological variables including moisture levels, chlorophyll content, and indicators 

of biotic and abiotic stress, multispectral remote sensing technology is one of the 

essential elements of precision agriculture. Due to their enormous complexity and 

volume, multispectral data from satellites and unmanned aerial vehicles (UAVs) 

necessitate advanced analytic techniques in order to efficiently extract pertinent 

information [2,3]. 

Machine learning has been used to evaluate agricultural data in recent years, but 

it still faces challenges in capturing complicated spatial-temporal correlations and 

non-linear patterns. Using layered artificial neural networks, deep learning is a 

subfield of machine learning that provides better skills for identifying patterns and 

characteristics in vast amounts of heterogeneous data. Convolutional neural 

networks (CNN) and recurrent neural networks (RNN) are two models that have 

been effectively used in image identification and time series prediction. These 

applications are especially pertinent to crop growth dynamics and multispectral 

image analysis [4,5]. 

According to earlier research, combining deep learning with multispectral data 

can increase the precision of agricultural production forecasting and the early 

identification of crop stress. For instance, using CNN optimized on UAV 

multispectral data, Mutanga et al. demonstrated an improvement in maize yield 

forecast accuracy of up to 40%. The capacity of deep learning models to generalize to 

various agroclimatic situations is up for discussion, though [6]. An adaptive strategy 

that can successfully transfer information between locations is required since several 
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studies have demonstrated that models trained in one region frequently perform 

worse when applied to other regions with varied soil and climatic characteristics 

[7,8]. 

Furthermore, the majority of research to date has concentrated more on correlation 

modeling, ignoring the causal link between crop yields and agronomic factors.  

Ignoring the causation component in predictive methods might lead to inaccurate 

interpretations and less-than-ideal management choices. Therefore, to increase 

prediction reliability and provide agricultural interventions a solid scientific 

foundation, causal modeling methods must be integrated into a deep learning 

framework. 

The goal of this project is to provide an integrated framework for precision 

agriculture predictive crop management by fusing deep learning with multispectral 

remote sensing. The research's primary goals are to develop a multimodal attention 

network that incorporates multispectral data from multiple platforms (such as 

satellites, unmanned aerial vehicles, and ground sensors) to enhance the model's 

input data, apply adaptive transfer learning to enable the model to adjust to the 

unique features of the local agroecosystem, and use causal modeling in neural 

networks to comprehend the causal relationships between environmental factors, 

agronomic practices, and crop yields [9,10]. 

This study is important because it can overcome the drawbacks of traditional deep 

learning models in precision agriculture and offer workable solutions that farmers 

and other stakeholders can use. This approach is anticipated to increase the 

effectiveness of the use of agricultural inputs like fertilizers and pesticides and reduce 

production risks associated with plant stress by up to 30% by lowering forecast 

uncertainty [11]. According to a case study conducted in a pilot field in East Java, the 

application of this framework supported sustainable agriculture practices by 

increasing rice yield by 22% and lowering the usage of agrochemicals by up to 35%. 

Additionally, the findings of this study provide significant additions to the body 

of knowledge on AI and precision agriculture, creating prospects for the creation of 

comparable technologies for other commodities and geographical areas. This work is 

therefore pertinent to the multidisciplinary scientific community interested in the use 
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of AI and remote sensing in the context of sustainable development, in addition to 

agronomic scientists and practitioners [12,13]. 

 

2. Materials and Method 

Additionally, the findings of this study provide significant additions to the body 

of knowledge on AI and precision agriculture, creating prospects for the creation of 

comparable technologies for other commodities and geographical areas. This work is 

therefore pertinent to the multidisciplinary scientific community interested in the use 

of AI and remote sensing in the context of sustainable development, in addition to 

agronomic scientists and practitioners.  

 

2.1. Materials 

  2.1.1. Multispectral Remote Sensing Data 

Multispectral photography from satellites and UAV (Unmanned Aerial 

Vehicle) platforms provided the majority of the data used in this investigation.  

The ability of the multispectral sensors to record several electromagnetic 

spectrum bands such as the red, green, blue, and near-infrared (NIR) bands is 

crucial for assessing the health and development of plants.  While satellite data 

like Sentinel-2 provide large area coverage with a spatial resolution of around 10 

meters, UAV multispectral sensors offer high spatial resolution (about 5 cm per 

pixel). 

 

2.1.2. Meteorological Data and Field Sensors 

To supplement environmental factors that impact plant development and 

insect infestations, local meteorological data such as temperature, humidity, and 

rainfall is also gathered from adjacent weather stations in addition to remote 

sensing data. Periodically, additional field data is collected for multispectral data 

calibration and model validation in the form of measurements of soil conditions 

(humidity, pH, and nutrient content). 
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2.1.3. Software and Hardware 

To expedite the computing process, a computer equipped with an NVIDIA 

Tesla V100 GPU is used for data processing and deep learning model training.  

The TensorFlow and Keras libraries, which facilitate the creation of CNN 

(Convolutional Neural Network), RNN (Recurrent Neural Network), and 

Transformer-based architectural models, are used to implement the deep 

learning method in Python. 

 

2.1.4 Program Code and Dataset 

The dataset utilized consists of a collection of UAV and satellite multispectral 

photos throughout two growing seasons, replete with annotations on plant 

conditions and harvest results. Following the completion of the peer-review 

process, all data, program codes, and experimental methods will be kept in a 

publicly accessible repository that readers may access. Before the final 

publication, the repository accession number will be given to guarantee research 

transparency and reproducibility. 

 

2.2. Method 

2.2.1. Information Gathering and Preparation 

The cropping cycle involved biweekly shooting schedules for UAV 

multispectral imagery collection and occasional downloads of satellite data from 

the Sentinel Hub platform. To guarantee consistency and precision of spatial 

data, data preprocessing techniques included radiometric calibration, 

atmospheric correction, and orthorectification. The images were then segmented 

to separate the crop region from the background and cropped in accordance with 

the experimental field limits. 

 

2.2.2. Extraction of Vegetation and Spectral Features 

To depict plant health and biomass, a variety of vegetation indices are 

computed from multispectral data, including NDVI (Normalized Difference 

Vegetation Index), GNDVI (Green NDVI), and GRVI (Green Ratio Vegetation 
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Index). Machine learning-based image processing methods are also used to 

extract other variables including canopy cover and plant density. 

 

2.2.3. Development of Deep Learning Models 

Through the use of a multimodal architecture, the created deep learning model 

incorporates meteorological variables and multispectral data. While RNN or 

Transformer-based models handle temporal data to forecast plant growth 

dynamics and pest attack risks, CNN is utilized to extract spatial characteristics 

from photos. To enhance model generalization under diverse agroecosystem 

circumstances, transfer learning is used. To train the model, the dataset is split 

into three parts: 70% training data, 15% validation data, and 15% testing data. To 

avoid overfitting, the Adam algorithm with adaptive learning rate and dropout 

regularization is used to improve the model parameters. 

 

2.2.4. Validation and Assessment of the Model 

Accuracy, precision, recall, and F1-score measures for crop condition 

categorization and pest attack prediction were used to assess the model's 

performance. Additionally, the accuracy of crop production prediction was 

assessed using Mean Absolute Error (MAE) and Root Mean Square Error 

(RMSE). By contrasting the model prediction findings with firsthand observation 

data from the experimental field, field validation was carried out. 

 

2.2.5. Implementation of Predictive Systems 

A web-based precision agriculture management system that offers a real-time 

monitoring dashboard and crop management suggestions based on predictions 

was combined with the validated model. For two planting seasons, this technique 

was tested on a 30-hectare trial field in tropical Indonesia. 

 

3. Result 

The primary findings of the study combining multispectral remote sensing and 

deep learning for precision agriculture's predictive crop management are shown in 

this results section. A deep learning model based on the ResNet50 architecture 
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modified with the ACmix self-attention module and coordinate attention mechanism 

was used to handle the field data, UAV and satellite multispectral imaging, and 

meteorological data. The model's performance in crop categorization, crop condition 

prediction, and precision agriculture management applications is demonstrated by 

the methodical arrangement of all the findings. 

 

3.1. Accuracy of Plant Classification with the Enhanced ResNet50 Model 

With an overall accuracy rating of 97.8%, the deep learning model that was 

constructed was able to effectively classify plants with a very high degree of accuracy 

on UAV multispectral data. Compared to the baseline ResNet50 model without the 

attention module, which only obtained an accuracy of 93.1%, this improvement is 

noteworthy. Accuracy rose by 2.9% with the addition of the ACmix self-attention 

module and 2.1% with the use of the coordinate attention mechanism. When the two 

modules were combined, the accuracy increased by 4.7% over the baseline. 

Table 1. Accuracy of Plant Classification on Various Model Configurations 

Model Accuracy (%) Precision (%) Recall (%) F1-Score 

(%) 

ResNet50 Baseline 93,1 92,4 91,8 92,1 

ResNet50 + ACmix 

Self-Attention 

96,0 95,7 95,5 95,6 

ResNet50 + Coordinate 

Attention 

95,2 94,8 94,5 94,6 

ResNet50 + ACmix + 

Coordinate Attention 

97,8 97,5 97,3 97,4 

These findings demonstrate that the integration process can better capture spatial 

and spectral characteristics, which enhances the model's capacity to differentiate 

between different plant species with comparable spectra. 

 

3.2. Evaluation in Relation to Conventional Classification Techniques 

Two conventional machine learning-based classification techniques, Random 

Forest (RF) and Support Vector Machine (SVM), are contrasted with the suggested 

deep learning model. The same texture and spectral characteristics from 
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multispectral pictures are used in both techniques. According to the assessment 

findings, the enhanced ResNet50 model continuously performs better than RF and 

SVM across the board. 

Table 2. Comparison of Deep Learning Model Accuracy with RF and SVM 

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Random Forest 89,4 88,7 88,2 88,4 

Support Vector 

Machine 

90,1 89,8 89,5 89,6 

ResNet50+Atensi 97,8 97,5 97,3 97,4 

This discrepancy demonstrates how well deep learning algorithms extract 

intricate characteristics and spatial-spectral correlations that conventional techniques 

are unable to capture. 

 

3.3. Forecasting the Health and Condition of Plants 

Using vegetation indices derived from multispectral data, the model is used not 

only for categorization but also for plant health status prediction. Chlorophyll and 

plant biomass measurements from the field are used to test this hypothesis. With a 

Root Mean Square Error (RMSE) of 0.12 and a Pearson correlation coefficient value 

of r =.89, the model generates a strong correlation between forecasts and field data, 

suggesting good prediction accuracy. 

 

3.4. Mapping Plant Variability in Space and Time 

Accurate mapping of the temporal and geographical variability of plant 

development is possible thanks to a deep learning model that incorporates temporal 

data from several picture collection intervals. While Figure 2 illustrates the dynamics 

of changes in vegetation indices during the planting cycle, Figure 1 displays a map 
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of plant categorization in the experimental field with a high degree of spatial 

precision. 

Figure 1. Mapping Plant Variability 

3.5 Models' Ability to Support Precision Management Effectively 

Based on forecasts of crop conditions and pest attack threats, the model's 

deployment in the precision agricultural management system offers management 

suggestions. According to field tests, these suggestions can lower the usage of 

pesticides and fertilizers by 28% and boost agricultural yields by 18% without 

compromising crop quality. 

 

3.6 Tests of Significance and Statistics 

The deep learning model's accuracy gain over conventional techniques is 

statistically significant, according to statistical analysis using independent t-tests 

(t(58) = 6.45; p <.0001; Cohen's d = 1.67), suggesting a strong effect. Additionally, the 

decline in the usage of agricultural inputs is significant (t(38) = 4.89; p =.0001; Cohen's 

d = 1.23). 

 

4. Discussion 

The study findings of combining multispectral remote sensing and deep learning 

for precision agriculture's predictive crop management are covered in this discussion 

part. Practical ramifications and future research prospects will be thoroughly 
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highlighted, and the key findings will be evaluated in light of prior research and 

working hypotheses. 

 

4.1. Analysis of the Results of the Classification and Prediction 

The findings shown that the multispectral crop classification accuracy was greatly 

increased to 97.8% using the ResNet50-based deep learning model supplemented 

with ACmix self-attention and coordinate attention modules.  This result is consistent 

with earlier research that shown deep learning techniques are superior at extracting 

intricate characteristics from multispectral pictures for use in precision agricultural 

applications. As an illustration of the enormous potential of deep learning in early 

crop detection and classification, Ferentinos (2018) and Chagas & Fernandes (2019) 

found that CNN models could identify plant illnesses with an accuracy above 90%.  

The increase in accuracy brought about by the attention module's integration 

shows that the model's spatial and spectral attention can pick up significant patterns 

that were previously challenging for conventional convolutional architectures to 

detect. The working hypothesis that attention processes can improve classification 

and prediction skills by making the model more sensitive to pertinent information in 

multispectral pictures is strengthened by this. 

 

4.2. Comparison with Traditional Methods 

The constructed deep learning model has notable benefits when compared to 

conventional machine learning techniques like Random Forest and Support Vector 

Machine. This is in keeping with research that demonstrates how deep learning can 

handle complicated picture data with non-linear characteristics that are challenging 

for conventional methods to map. This benefit creates chances to broaden the use of 

deep learning in a range of agricultural products and agro-ecosystem settings.  

 

4.3. Consequences for Crop Management and Precision Agriculture 

Precision agriculture management will be significantly impacted by this model's 

precise mapping of spatial-temporal variability and prediction of crop health 

problems. This technology can help farmers maximize the usage of inputs like 

fertilizers and insecticides while reducing the danger of pest and disease infestations 
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since it can monitor in real time and offer data-driven advice. By lowering 

environmental effects and boosting production efficiency, this advances the objective 

of sustainable agriculture. 

The success of this strategy in actual practice is further supported by field 

experiment findings that demonstrate an 18% increase in yield and a 28% decrease in 

input use. These results highlight the transformative significance that deep learning 

and remote sensing technologies play in the digital transformation of global and 

tropical agriculture. 

 

4.4. Restrictions and Difficulties 

Notwithstanding the encouraging outcomes, this study had a number of 

drawbacks. One is that in order to guarantee model generalization over a range of 

agroecosystem conditions, a substantial and varied amount of training data is 

required. As earlier research have shown, model performance may be impacted by 

variations in multispectral imaging quality brought on by weather and other 

technical variables. Furthermore, the intricacy of deep learning models and the 

integration of data from several sources necessitate substantial computational 

resources, which might be a deterrent to deployment in the field with limited 

resources. 

 

4.5 Prospects for Further Research 

 Several significant characteristics can be developed by more study, including: 

• creation of more complex multimodal models that include data from soil, lidar, 

and hyperspectral sensors to increase precision and application coverage. 

• Real-time field use is supported by model optimization for computational 

efficiency that enables operation on edge or mobile devices. 

• creation of AI-based recommendation systems that can adjust to local conditions 

and climate change, boosting agricultural resistance to environmental 

fluctuations. 

• cross-site and longitudinal research to evaluate the models' resilience and 

generalizability in tropical and subtropical agroecosystems. 
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• Integration of blockchain and IoT technologies for data security and transparency 

in the supply chain for precision agriculture. 

 

5. Conclusions 

All things considered, this work offers compelling empirical proof that combining 

deep learning with multispectral remote sensing may greatly enhance precision crop 

management prediction skills. This is consistent with research from previous studies 

that emphasizes the value of deep learning in multispectral image processing for 

precise crop categorization, plant disease diagnosis, and agricultural yield 

forecasting. For instance, it has been demonstrated that using UAVs equipped with 

multispectral sensors in conjunction with deep learning algorithms can monitor 

illnesses and pests effectively and swiftly, with detection accuracy above 90%. 

Furthermore, it is challenging for classical machine learning techniques to extract 

spectral and spatial information from multispectral and hyperspectral photography 

data; deep learning techniques like CNN and Transformer have shown improved 

skills in this regard. 

These results provide credence to the working hypothesis that the attention 

mechanism incorporated into the deep learning architecture can improve the model's 

sensitivity to significant characteristics, leading to better crop condition prediction 

and classification accuracy. Real-time data-driven decision-making may enhance the 

effectiveness of agricultural inputs and reduce the danger of pest and disease 

assaults, creating prospects for a more intelligent and responsive digital 

transformation of agriculture. As a result, this technology promotes sustainable, 

ecologically friendly farming methods in addition to raising output. 

There are still many obstacles to overcome, nevertheless, most notably the 

requirement for extensive and varied training data to guarantee model generalization 

across tropical agroecosystems. As various studies have noted, variations in picture 

quality brought on by weather and imaging methods can also have an impact on 

model performance. Furthermore, the high computing resource needs and 

complexity of deep learning models prevent the discipline from being widely used, 

particularly in places with inadequate technology infrastructure. 

https://creativecommons.org/licenses/by/4.0/


  25 of 26 
  

 

This work is licensed under a Creative Commons Attribution 4.0 International license  

   Agricultural Power Journal, May 2024, Vol 01, No 02 

  

 

In order to enhance information and boost prediction accuracy, future research 

should concentrate on creating multimodal models that incorporate lidar, soil sensor, 

multispectral, and hyperspectral data. Furthermore, enhancing models to operate on 

edge devices and be computationally efficient would increase this technology's 

usability for farmers in the field. To evaluate the generalizability and robustness of 

models under tropical and subtropical agroecosystem settings, longitudinal and 

cross-site investigations are particularly crucial. Data security and transparency in 

the supply chain for precision agriculture may be addressed by combining 

blockchain technology with the Internet of Things. 

The potential advantages for farmers and the agribusiness industry will be 

considerably higher if these issues are resolved and the technology is advanced, 

promoting global food security in the face of population expansion and climate 

change constraints. This study demonstrates that multispectral remote sensing and 

deep learning are crucial building blocks for the development of contemporary, 

intelligent, effective, and sustainable agriculture. 
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