

## Chemical Equilibrium

Adella Rizki Amalia <sup>1\*</sup>, Livia Putrima Rijas <sup>2</sup> and Zafrinaldi <sup>3</sup>

<sup>1-3</sup> Department of Chemistry, Universitas Negeri Padang,

\* e-mail: adellaamalia2011@gmail.com

### ABSTRACT

Equilibrium chemistry occurs when the concentrations of reactants and products remain constant over time. If an external change affects the system, the reaction shifts to establish a new equilibrium, according to Le Chatelier's Principle. This experiment tested equilibrium involving iodine dissolved in two immiscible solvents: organic  $\text{CCl}_4$  and water. The aim was to identify factors affecting chemical equilibrium and to determine the equilibrium constants for the reaction  $\text{I}_2 + \text{I}^- \leftrightarrow \text{I}_3^-$ . Equilibrium is influenced by temperature, pressure, volume, and concentration. The reaction is reversible, meaning products can revert to reactants until equilibrium is reached. In this practicum, concentration and volume were observed. The method involved saturating  $\text{I}_2$  in  $\text{CCl}_4$  in two different Erlenmeyer flasks, then titrating the later solution with thiosulfate to measure  $\text{I}_2$  content. Titration was done quickly after adding starch indicator due to the importance of equilibrium time. Two experiments were conducted: the first to determine the distribution constant ( $K_D$ ) by measuring  $\text{I}_2$  in both  $\text{CCl}_4$  and water, and the second to find the equilibrium constant ( $K_C$ ) by adding  $\text{KI}$  solution to  $\text{I}_2$  in  $\text{CCl}_4$ . The obtained values were  $K_C = 66.176 \text{ M}$  and  $K_D = 32$ .

### Article Information

Received: May 13, 2024

Revised: June 06, 2024

Online: June 08, 2024

**Keywords:** Equilibrium; concentration; volume

### 1. Introduction

Equilibrium chemistry is a dynamic process. Reactions occur at the same rate but in opposite directions at the reaction front and the reaction back. Bonding occurs when the equilibrium of a reaction is broken or formed between reactant and product molecules. At the beginning of the reaction, the concentration of reactants is high. Then, collisions between molecules form product molecules. Concentration of product molecules occurs when enough reactions take place; then, the opposite



(formation of "reactants" from "products") begins to take place [1]. Reaction chemistry generally takes place reversibly, which is also called two-way, and involves lots of walking. It is not perfect, which means that the only reaction is to walk, reach the point, and finally stop, leaving behind substances that do not react. At a certain temperature, pressure, and concentration, the period at which the reaction stops is consistent, and the relationship between the reactant and product concentrations still exists. The speed of the reaction at equilibrium moves to the right at the same rate as the speed of the reaction to the left [2].

Solubility Iodine ( $I_2$ ) is highly soluble in water and insoluble in carbon tetrachloride ( $CCl_4$ ). The second solvent, however, cannot mix with water and forms two layers: water on top and  $CCl_4$  on the bottom. When a solution of  $I_2$  in  $CCl_4$  is added to water and shaken, the second solvent will separate and return at the end. Then, the second solvent separates and returns. As a result,  $I_2$  is distributed into two solvents in proportion to the two solvents. At a constant temperature, the sum of the concentration ratios of the two solvents remains constant, a phenomenon known as constant coefficient distribution or partition coefficient. The  $KD$  value can be determined by measuring the amount of  $I_2$  in the two solvents. Although  $I_2$  dissolves poorly in water, it can grow and multiply if the water contains potassium iodide (KI) due to the formation of triiodide ( $I_3^-$ ) complex ions. The reaction formation is back-and-forth until equilibrium is finally formed with constant equilibrium ( $K_c$ ). The  $K_c$  value is very large. This means that the equilibrium is highly skewed to the right, so  $[I_3^-] \gg [I_2]$ . This equilibrium can be achieved by adding a KI solution to an  $I_2$  solution in  $CCl_4$ . After shaking and leaving it to cool, the solvent separates back out, resulting in a higher concentration of  $I_2$  in the water compared to the  $CCl_4$  [3].

An equilibrium reaction is closely tied to Le Châtelier's principle. A system in equilibrium tends to maintain its balance. If there is an outside influence, the system will change so that balanced circumstances quickly return. Henri Le Châtelier, a French chemist, discovered that if a chemical reaction in equilibrium undergoes a state change (i.e., accepts external action), the reaction will reach a new equilibrium with a shift to overcome the changes (i.e., commit a reaction in response to changing circumstances). This is called Le Châtelier's principle. The "[ ]" sign represents equilibrium concentration. The reaction rate of a chemical reaction at a constant



temperature is proportional to the product of the concentrations of the reacting substances. Reaction chemistry moves to an equilibrium dynamic where there are reactants and products. However, position No. 2 again has a tendency to change. Sometimes, the concentration of the product is much greater than the concentration of unreacted reactants in mixture equilibrium. In this case, the reaction is said to be "perfect." In equilibrium, catalysts increase the speed of the reaction, and the reaction returns to the same state. Catalyst: There is no change in the amount relative to the balance. Although equilibrium means no change, a catalyst can alter the time required to reach equilibrium. A reaction may proceed at the appropriate rate only at very high temperatures, but it can occur quickly at far lower temperatures if a catalyst is used [5]. A catalyst in equilibrium can speed up the reaction rate so that equilibrium is quickly achieved. Catalysts are substances that can increase the rate of reaction until equilibrium is reached, at which point the reaction becomes permanent. Equilibrium is reached when the reaction occurs permanently. For example, a catalyst in cell material burns hydrogen, breaking the molecule of oxygen (cathode) into oxygen atoms or ions, which react with hydrogen atoms or ions from the anode [6]. Equilibrium chemistry is a dynamic process where the reaction progresses and comes back at the same rate but in opposite directions. Bonding to reaction directions: Reactions in equilibrium will break or form between the reactant and product molecules. When you concentrate the beginning reactant, the beginning reactant increases, so collisions between the molecules form a molecule, a product molecule. When you concentrate the product, the product becomes big enough, and the reaction reverses (the formation of "reactants" from "products" and "products" from "reactants" begins taking place). Reaction chemistry generally takes place reversibly and can be called a two-way reaction. It also involves lots of walking, which means reactions are only perfect reactions. Perfect reactions are reactions that stop at a certain point, leaving substances that do not react. At a certain temperature, pressure, and concentration, the reaction will stop. The relationship between the concentration of reactants and products still exists at the point at which the reaction stops. The speed of the reaction at equilibrium moves to the right at the same rate as the speed of the reaction to the left [7].



## 2. Materials and Method

This experiment required Erlenmeyer flasks, glass measuring pipettes, measuring pipettes, burettes, and spray bottles. The materials used were an  $I_2$  solution saturated in  $CCl_4$ , 0.1 M KI, 0.02 M  $Na_2S_2O_8$ , a 1% indicator solution, and solid KI crystals.

Provide two Erlenmeyer flasks, labeled A and B. Add 20 mL of solution to Erlenmeyer A and add  $I_2$  to  $CCl_4$ . For the procedure to determine KD, add 200 mL of distilled water to Erlenmeyer A. Close the Erlenmeyer tightly and shake it vigorously. Then, place it in a thermostat at 30°C for 30-60 minutes. Occasionally, remove the Erlenmeyer and shake it. Once equilibrium is achieved, remove 5 mL of solution from the  $CCl_4$  layer (below the water layer) using a pipette. Add two grams of solid KI crystals and 20 mL of water, and then homogenize. Perform the titration with a standard sodium thiosulfate solution. Add starch (10 mL) to the pale yellow solution. Record the volume of thiosulfate used ( $V_1$ ). Take 50 mL of the water layer solution and titrate it with the thiosulfate solution. Record the volume of thiosulfate used ( $V_2$ ). Then, determine the KC value. For the procedure to determine the KC value, 200 mL of solution was added to standard KI 0.1 M in Erlenmeyer B. The Erlenmeyer was closed tightly and shaken vigorously. Afterwards, it is placed in a thermostat at 30°C for 30-60 minutes. Occasionally, remove the Erlenmeyer flask and shake it. Once equilibrium is achieved, use a pipette to take 5 mL of solution from the  $CCl_4$  layer (below the water layer). Add two grams of solid KI crystals and 20 mL of water, and then homogenize. Perform the titration with the standard sodium thiosulfate solution. Add starch (10 mL) to the pale yellow solution. Record the volume of thiosulfate used ( $V_3$ ). Take 50 mL of the water layer solution and titrate it with the thiosulfate solution. Record the volume of thiosulfate used ( $V_4$ ). Then, determine the KC value.

## 3. Result

Erlenmeyer A

In layer  $I_2$  in  $CCl_4$

[ 2]  $CCl_4$  = 0.002 M

In the water layer

[ 2] water = 0.000075 M



Coefficient Distribution (KD) = 2

Erlenmeyer B

[ 2]  $CCl_4$  = 0.0006 M

[I2] water = 0,001235 M

[I2] free =  $18,775 \times 10^{-6}$  M

[I3-] = 0,001216 M

[I-] = 0,098 M

$KC$  = 66,175 M

#### 4. Discussion

In this practicum, we tested equilibrium chemistry. Equilibrium chemistry occurs when the rate of reaction is the same from reactant to product. The rate of reaction is the speed of the product.

In this experiment, we used a mixture of solvents that don't mix with the organic solvent  $CCl_4$ . The concentration of the organic solvent  $CCl_4$  is determined by the concentration of the heterogeneous iodine in equilibrium with the heterogeneous iodine in two immiscible solvents. Determination of the  $CCl_4$  concentration and the  $I_2/I_3$  balance in an aqueous solution is carried out by balancing the KI solution with  $CCl_4$  and the  $I_2$  solution in  $CCl_4$ . After achieving equilibrium, the second solution was separated, and each solution was titrated with sodium thiosulfate to determine the  $I_2$  content. Mixing an  $I_2$  solution in  $CCl_4$  with a KI solution produces a purple solution.

After a few silent moments, the solution apparently separated. The yellow section is concentrated, while the lower part is an old purple color. The yellow part is iodine dissolved in water. Based on observation, the separation solution is possibly in equilibrium. The iodine distributed in the  $CCl_4$  solution has been achieved.

To determine constant equilibrium, first count the total iodine concentration, then the iodine concentrations in the  $CCl_4$  and water solutions, as well as the  $I_3^-$  and  $I^-$  levels. Once the concentrations of all existing species are balanced in known circumstances, the mark of constant equilibrium can be determined. Equilibrium occurs when iodine dissolved in water as potassium iodide undergoes the following



reaction:  $I_2 + I^- \leftrightarrow I_3^-$ . This reaction moves to dynamic equilibrium, where there are reactants and products, but the position is not fixed and has a tendency to change. Sometimes, the concentration of the product is much greater than the concentration of unreacted reactants in the equilibrium mixture, so the reaction is said to be "perfect" [8].

After that, the solution was left undisturbed until a clear difference was seen in the second layer. Then, indicator starch was added. This indicator serves a purpose. For endpoint titration, changes in color indicate the endpoint. This indicator binds the released  $I_2$  from its bond with water or  $CCl_4$ . The entry of  $I_2$  into starch produces an old blue color in the titrated solution.

Next, the second layer solution was titrated with 0.02 M  $Na_2S_2O_8$ . Titration was done until the solution changed from a purple-blue color to clear. Equilibrium time is very important, so titration should be done as soon as possible. It is possible to add the starch indicator after the solution is prepared. After performing the calculations, the KC value was found to be 66.176, and the KD value was found to be 32.

## 5. Conclusions

This experiment tested equilibrium chemistry, focusing on the equilibrium that occurs when the reaction rate from reactant to product is equal to the reaction rate from product to reactant. The experiment also involved the law of distribution, in which iodine was dissolved in two immiscible solvents:  $CCl_4$  and water. To determine the concentrations of species in equilibrium, a heterogeneous equilibrium of iodine in the two solvents was established. The concentrations of  $I_2$  and  $I_3^-$  in the aqueous solution were determined by titration with sodium thiosulfate. Mixing an  $I_2$  solution in  $CCl_4$  with a KI solution resulted in a purple solution. After settling, it was observed that the upper layer was yellow, indicating the presence of iodine in water, and the lower layer was purple, indicating the presence of iodine in  $CCl_4$ . This suggests that equilibrium was achieved with the iodine distributed between the two solvents. Then, the equilibrium constant (KC) and distribution constant (KD) were determined based on the concentrations of the various species. Adding a starch indicator facilitated endpoint titration with 0.02 M



This work is licensed under a **Creative Commons Attribution 4.0 International license**

*Chemistry Journal*, June 2024, Vol 1, No 1

**60 of 60**

Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> until the solution changed from purple-blue to clear. The obtained KC value was 66.176, and the obtained KD value was 32.

## References

1. Stephen, Bresnick. 2002. General Chemical Terms. Jakarta: Erlangga.
2. Ablianda. 2020. Class XI Chemistry High School Learning Module. Palembang: SMA N 5 Palembang.
3. Amran. (2019). Guide Physical Chemistry Practicum 1. Padang: Padang State University.
4. Martin. (2015). Learning Module. Surabaya: SMA 13 Surabaya.
5. Stephen. (2012). General Chemistry Terms. Jakarta: Erlangga .
6. Goddess. (2017). Development of Reaction Learning Media Equilibrium Chemistry. Journal of Technology and Vocational Education, 71-80.
7. Wati, k. (2013). Eye Dictation Studying Chemistry Base. Jimbaran Hill: Udayana University.
8. Dewi. 2017. Development of Reaction Learning Media Chemical equilibrium. Journal of Technology and Vocational Education, (612): 71-80.