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ABSTRACT Article Information
Due to their specificity and environmental friendliness, enzymes are Received: June 12, 2024
frequently used as biocatalysts for organic compound synthesis. The Revised: June 26, 2024
goal of this research is to synthesize anethole dimer using the laccase Online: June 29, 2024

enzyme as the biocatalyst. Laccase is a widely used enzyme that
belongs to the oxidoreductase group. This study employed anise oil
containing 90% anethole, laccase isolated from the white oyster
mushroom (Pleurotus ostreatus) with an activity of 712,758 U/L, and
hydroquinone as a mediator. The anethole dimerization was
conducted in a biphasic medium (ethyl acetate and phosphate buffer
in a 4:1 ratio) for 24 and 48 hours. The reaction mixture was extracted
with ethyl acetate, yielding a brownish, viscous liquid that exhibited
increased color intensity after 48 hours. Gas chromatography analysis
of anise oil and the reactions after 24 and 48 hours revealed increased
peak intensity and changes in peaks after 48 hours. The percentage
area of anethole and p-anisaldehyde was smaller in the 48-hour
reaction than in the 24-hour reaction. Identification of the compounds
after 48 hours suggested the formation of new compounds resulting
from oxidation reactions. Examples of these new compounds include
caryophyllene oxide; however, the dimerization of the anethole
compound was not conclusively identified.

Keywords: white oyster mushroom; biocatalyst; laccase enzymes;
anethole

1. Introduction
Indonesia is an archipelagic nation known for having the world's second largest tropical
forest, rich in biodiversity and recognized as one of the seven megabiodiverse countries
alongside Brazil. The distribution of higher plants in Indonesia's tropical forests accounts
for more than 12% (30,000 species) of the global total (250,000 species) [-]. These facts
underscore Indonesia's role in meeting global demand for palm oil, spices, and essential

oils.

PUBLISHED BY : https://doi.org/10.70076/cj.v1i1.30
Q'J HEI PUBLISHING https://heijournal.id/index.php/cj



https://doi.org/10.70076/cj.v1i1.30
https://heijournal.id/index.php/simj

[oXolcR

This work is licensed under a Creative Commons Attribution 4.0 International license
Chemistry Journal, June 2024, Vol 1, No 1 33 of 47

In recent years, Indonesia has seen a significant increase in the export of essential oils
since 2005 [4]. Essential oils are commonly used in pharmaceuticals, cosmetics, and
perfumes, as well as in the food and beverage industries. Essential oils are secondary
metabolites of plants that serve as defensive mechanisms and attractants for pollinators
[17].

Among the many essential oil products produced, Indonesia is recognized for producing
predominantly anise oil and star anise oil, mainly found in Yogyakarta, Boyolali, and
Sumatra [18]. Anise oil is known to contain propenyl phenol compounds, specifically
anethole, which comprises 80-90% [32]. Anethole is commonly used as a key ingredient in
baby oils and medicines. Moreover, anethole also exhibits antioxidant, anti-inflammatory,
and gastroprotective activities [13].

Secondary metabolites in essential oils include terpenoids, phenolics, and aryl
propanoids [38]. In nature, aryl propanoid compounds are found in several groups based
on their structures, such as lignans, allyl phenols, propenyl phenols, and cinnamates.
Lignans, as more complex compounds, can be synthesized from simpler aryl propanoid
groups like propenyl phenols [24].

Currently, much research is focused on transforming aryl propanoid compounds into
other compounds with higher biological activity. One approach involves synthesizing
propenyl phenol dimer compounds. This was undertaken by Arifin (2008), who
synthesized dimer compounds from eugenol. The dimer compound of eugenol was
subsequently tested for its antioxidant activity. The results indicated that eugenol itself
exhibited a lower IC50 value compared to its dimer compound. Therefore, the formation of
eugenol dimer compounds could enhance antioxidant activity.

The coupling reaction of propenyl phenol compounds to form dimer compounds can be
achieved using acid catalysts such as HCI [26] or through radical formation using UV.
However, the latter method has a drawback in that the resulting products are a mixture of
more than 5 compounds [6]. The use of catalysts in coupling reactions is costly and
environmentally unfriendly, prompting extensive research to discover more
environmentally friendly catalysts.

The dimerization reaction of propenyl phenol derivatives can also be conducted using
the biocatalyst enzyme oxidoreductase, such as the laccase enzyme [39]. Based on previous
research, laccase enzymes have been isolated from wood-decaying fungi [27], mold from
empty oil palm fruit bunches (Dewi, 2011), and white oyster mushrooms (Arifin, 2008).
Laccase enzyme isolated from white oyster mushrooms exhibits a specific activity of 0.56
units/mg protein (Arifin, 2008). In its catalytic process, laccase enzyme utilizes oxygen and

only produces water as a byproduct, making it an environmentally friendly catalyst [28].
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2. Materials and Method
Research materials

The materials used in this research were white oyster mushrooms and anis oil.

Chemical material
The chemicals used in this research are buffers phosphate, acetone, aquadem,

hydroquinone, n-hexane, ethyl acetate, ethanol, and ABTS.

Research tools

The research tools used in this study include a blender, an Erlenmeyer flask, a
separating funnel, a rotary vacuum evaporator, filter paper, a centrifuge, a gas
chromatography-mass spectrometry (GC-MS) instrument, a UV-visible spectrophotometer,
a thin-layer chromatography (TLC) plate, a Chromatotron, a micropipette, aluminum foil,
coolers, pH meters, thermometers, refrigerators, and glassware commonly found in

laboratories.

3. Result
Isolation of laccase enzyme from white oyster mushroom

Laccase enzymes are widely produced by fungi and higher plants. They have been
isolated from fungal groups such as Ascomycetes, Deuteromycetes, and Basidiomycetes. In
this study, laccase enzyme was isolated from white oyster mushroom (Pleurotus ostreatus),
which belongs to the Basidiomycetes group. In white oyster mushrooms, laccase plays a
role in lignin degradation and other functions, including pigmentation, fruiting body
formation, spore formation, and defense mechanisms [15].

The isolation of laccase enzyme from white oyster mushrooms begins with grinding the
mushrooms in a 0.2 M phosphate buffer at pH 6.0. The use of this pH 6.0 phosphate buffer
helps maintain the enzyme's pH optimum range, as laccase from white oyster mushrooms
functions optimally within this range [25]. The ground mushrooms are then homogenized
while maintaining a temperature of 0-5°C. This temperature range is crucial to prevent
protein denaturation and to keep the enzyme inactive until it is used in the reaction.

Next, the laccase enzyme extract is separated from cellular debris. Filtration is
performed using cotton cloth and centrifugation at 3500 rpm to obtain the supernatant. This
supernatant contains crude laccase enzyme, which appears yellowish-brown. To prevent

denaturation, the enzyme is stored at temperatures between 0 and 2°C.
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Deposition of crude extract of laccase enzyme

To enhance the enzyme's activity, purification is necessary. There are several methods
for enzyme purification, including protein precipitation with ammonium sulfate or organic
solvents, as well as chromatography. Chromatography methods include ion exchange,
affinity, filtration, and hydrophobic chromatography [16]. In this study, protein
precipitation was carried out using the acetone precipitation method.

Partial purification using acetone involves reducing the hydrophobic molecules on the
enzyme when acetone is added. Water molecules around the hydrophobic surface of the

protein are replaced by acetone molecules, thereby disrupting hydrophobic interactions.

hydrophobic part
organic solvent
Figure 1. Protein aggregation due to the interaction of opposite charges one protein

with another protein

The primary factors causing protein molecule aggregation by acetone are electrostatic
bonds and dipolar forces. The presence of acetone in the protein solution leads to
aggregation between oppositely charged surfaces of different protein molecules. The
precipitation process with organic solvents occurs due to the electrostatic state of the
protein. Larger protein molecules aggregate more easily because they have higher charge
differences. Larger molecules aggregate quickly due to significant changes in surface
charges between different protein molecules.

In the acetone purification process, the temperature must be below -10°C. At higher
temperatures, molecules of the organic solvent enter the protein through its surface and
interact with hydrophobic residues of the protein. These interactions lead to protein
denaturation [16].
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Figure 2. Protein denaturation due to organic solvents

Protein precipitation was carried out by adding acetone to the enzyme extract in a ratio
of acetone-to-enzyme extract (3:1). This ratio was determined based on research conducted
by Mustafa et al. [25] for the purification of laccase enzyme, where the acetone to enzyme
extract ratio was maintained at 3:1. The mixture was then stirred until precipitation
occurred. After the precipitation step, a whitish precipitate was obtained, which was
subsequently centrifuged to separate the enzyme from the organic solvent and suspended
in pH 6 phosphate buffer.

Determination of laccase enzyme activity

In this study, the activity of the laccase enzyme was determined using the method
described by Bourbonnais and Paice [31]. The principle of this assay is as follows: A non-
phenolic dye, 2,2’-Azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS), is oxidized by
laccase to form a more stable radical cation (ABTS+). The concentration of the blue-green
colored radical cation (measured at a wavelength of 420 nm) correlates with laccase activity
[-]. Below is the reaction showing the conversion of ABTS to ABTS radical cation.
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Figure 3. Acid oxidation reaction of 2,2'-Azinobis-di-(3-ethylbenzthiazoline- 6-
sulfonate) (ABTS)

The change in absorbance of the radical cation was observed every minute for five
minutes. Laccase activity was expressed as international units (IU) per liter, where one IU is
defined as the amount of enzyme that can oxidize one micromole of ABTS per minute at
room temperature and a pH of six. The graph below illustrates the relationship between
ABTS radical cation absorbance and time.

Time (minutes)

Figure 4. Graph of the relationship between ABTS cation radical absorbance and time

From the graph above, it can be observed that the maximum gradient is obtained from
the point 0-1. Based on calculations, the activity of the laccase enzyme obtained is 712.758
U/L. This enzyme activity level falls within the category capable of acting as a biocatalyst in
reactions forming organic compound dimers, trimers, or polymers. This assessment is
based on comparing values from various enzyme isolations used as biocatalysts in organic

reactions. To catalyze the formation of dimer, trimer, and polymer compounds, a minimum
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activity of 68 U/L is required, whereas the maximum activity reported reaches up to 2200
U/L [38].

Anethol dimerization reaction catalyzed by laccase enzyme

The laccase enzyme employed in this study is an oxidoreductase enzyme capable of
catalyzing oxidation and reduction reactions. Laccase enzymes catalyze the oxidation of
phenolic compounds into radicals, which can subsequently form dimers, oligomers, or
polymers.
In the catalytic reaction of phenolic compounds, laccase enzymes require another
compound to act as a mediator. This mediator compound is typically a simpler structured
phenolic compound compared to the substrate [39]. In this study, the mediator used is
hydroquinone. Hydroquinone acts as an electron shuttle, undergoing oxidation by the

laccase enzyme. The oxidized mediator then accelerates the oxidation of the substrate.

H,0 Laccase, . Mediator Substrate,
é (0X; (0X]

(red)

0, Laccase Mediator,, Substrate, oy

Figure 5. Schematic of the laccase mediator system

According to Johannes [40], hydroquinone can enhance oxidation by up to 13%
compared to reactions conducted without a mediator. The small size of hydroquinone
allows it to interact more readily with enzymes compared to substrates. This reactive
hydroquinone radical can then oxidize phenolic substrates such as anethole into anethole
radicals, while O; acts as a hydrogen acceptor and is reduced to H,O.

Laccase enzyme, as a biocatalyst, is a metalloenzyme, meaning it is an enzymatic protein
that forms strong bonds between its protein component and a metal embedded within the
enzyme molecule. The metal in the enzyme facilitates electron transfer, charge transfer,
substrate transfer, oxygenation, and detoxification processes. In holoenzymes, laccase can
exist as monomers, dimers, or trimers, each monomer containing four Cu atoms distributed
across three redox sites, with each site playing a distinct catalytic role [41].

The presence of Cu metal in laccase facilitates electron transfer from the reduced
substrate to oxygen molecules without releasing toxic peroxide intermediates. The
enzymatic mechanism involves three main steps: reduction at the mononuclear Cu atom to

trinuclear Cu, followed by the reduction of O, by trinuclear Cu to form H,O [42].
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Figure 6. Mechanism of action of Cu on the laccase enzyme [5]

Dimerization of anethole is conducted in a biphasic medium. The use of a biphasic
medium enhances product stability and allows for higher extraction efficiency in the
organic phase compared to a monophasic system [25]. According to Adelakun et al. [43], a
biphasic medium for organic compound synthesis using laccase biocatalysis involves
mixing a buffer with an organic solvent. The organic solvents used include acetone, ethyl
acetate, ethanol, dioxane, and methanol. Based on their findings, ethyl acetate provides the
highest product yield. Therefore, in this study, the biphasic medium used is a mixture of
ethyl acetate and phosphate buffer in a ratio of 4:1.

Qualitative testing by comparing reaction compounds in reaction tube II and the control
tube I shows observable physical differences. In tube II, which contains a biphasic solution
of laccase enzyme, hydroquinone, and anise oil, a darker brown color is observed in the
lower layer compared to tube I, which has the same composition but lacks laccase enzyme.
This indicates a change has occurred, likely due to the formation of a new compound in
tube II.

To isolate the formed products, the reaction was scaled up using 5 mL of anise oil in a
biphasic medium (ethyl acetate: phosphate buffer = 4:1). The mixture was stirred for 2
hours and allowed to stand for 24 and 48 hours. Subsequently, extraction was performed
using ethyl acetate to separate the organic and aqueous phases. The separation process is

based on the polarity differences between the components in the solution.
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The extracted organic phase was then evaporated to remove the solvent, yielding a
thick, brownish liquid. The reaction at 48 hours showed a higher concentration intensity

compared to the reaction at 24 hours.

Analysis of reaction products

Qualitative observation of the reaction product can be determined by changes in color
and aroma. Additionally, identification can be done using thin-layer chromatography
(TLC). This method can also indicate the number of compound components in the reaction
product. The separation process is based on the differential distribution of each component
in a mixture into the mobile and stationary phases.

In this study, the developing solution (mobile phase) used was a mixture of n-hexane
and ethyl acetate in various ratios. Generally, the TLC results did not show significant
changes in the reaction. This could be due to the small amount of reaction products and the

complexity of the mixture, making it difficult to identify the reaction products.

GC-MS analysis
Analysis of anis essential oil using GC-MS produces chromatogram with 5 compound
peaks as shown in figure 7 as follows:
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Figure 7. Anis essential oil chromatogram

Based on the chromatogram above, it is noted that the highest peak appears at a
retention time of 18.96 minutes with an area percentage of 65.71%. From the MS analysis
results, this peak at m/z 148 corresponds to anethole compound. Peak no. 1 corresponds to
the solvent, chloroform. Peaks 2 to 4 correspond, respectively, to anethole, p-anisaldehyde,

and p-methoxybenzyl methyl ketone. The MS spectrum of anethole is depicted in Figure 7.
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Figure 8. Mass spectrum of the anethol compound

In this study, anise oil was reacted in a biphasic medium using the biocatalyst laccase
and hydroquinone as a mediator to form dimeric compounds of anethole. The reaction was
conducted for 24 hours and 48 hours. Here are the results from the GC-MS analysis of the

anise oil reaction after 24 hours.
e
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Figure 9. Chromatogram of anis oil reaction results for 24 hours
The chromatogram of the reaction product of anise oil after 24 hours shows the highest
peak at a retention time of 18.958 minutes, covering an area of 77.68%, and was identified

by MS as anethole. Here are the compound data generated from the 24-hour reaction.

Tabel 1. Data on compound content in 24 hours reactions

No Peak Reten.tion Time Compound % Area
(minutes) Name
1 18,056 Anetol 1,59
2 18.960 Anetol 77,68
3 21,379 p-Anisaldehis 17,25
4 22,992 Anisil aseton 3,47
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GC-MS analysis for the reaction of anis essential oil for 48 hours can be seen in Figure 10

below
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Figure 10. Chromatogram of anis oil reaction results for 48 hours

The GC analysis chromatograph for the 48-hour reaction had many more peaks than the
24-hour reaction, so it can be concluded that there are new compounds. The following

differences are produced:

Tabel 2. Differences in compound yields

18,958 Anetol 77,68 37,42
21,347 p-anisaldehid 17,25 2727

The anethole and p-anisaldehyde compounds in the 24-hour reaction had a higher
percentage area than those in the 48-hour reaction. This suggests that the amount of
anethole decreased in the 48-hour reaction, possibly due to its conversion into other

compounds. Below is the compound data generated from the 48-hour reaction:

Tabel 3. Data on compound content in the 48 hours reaction

1 16.897 Anetol 0.86
2 18.024 Estragol 3.82
3 18.958 Anetol and Estragol 37.42
4 19.009 Anetol and Estragol 19.30
5 21.080 Kariofilena 0.42
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6 21.347 p-Anisaldehis 27.27
7 22.955 Anisil Aseton 6.92

p-metoksipropiofenon
dan 1-(4-Metoksi-fenil)-
2-
fenil-eten-1,2-dion

8 23.867 1.39

The above data indicates the presence of different compounds in the 24-hour reaction
product. Three of these compounds are oxidation reaction products with a retention time of
21.083 and an area of 0.42%, representing caryophyllene oxide. Caryophyllene oxide can be
synthesized from caryophyllene through oxidative reactions using H,O, (Kadarohman et
al., 1999). The formation of this compound in the 48-hour reaction suggests that oxidative

reactions were catalyzed by laccase enzymes. Below is a diagram of the formation process.

Kariofilena

Kariofilena oksida Hidroperoksida

Figure 11. The reaction mechanism for the oxidation of caryophyllene with oxygen
becomes caryophyllene oxide

The following is the spectrum of the compound caryophyllene oxide
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Figure 12. Mass spectrum of caryophyllene oxide compounds
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Then, at a retention time of 23.86 with an area percentage of 1.39, it is thought that it can
be produced through oxidative coupling processes. The results of the MS analysis for these

compounds are shown below.
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Figure 13. Mass spectrum of the compound 1-(4-Methoxy-phenyl)-2-phenyl-ethene-
1,2-dione

This hypothesis is based on the MS spectrum data of a compound with an 86% similarity
to 1-(4-Methoxyphenyl)-2-phenyl-ethen-1,2-dione found in the library. The structure of the

reference compound is shown in the following figure:

o))
|
00)
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Figure 14. Structure of the compound 1-(4-Methoxy-phenyl)-2-phenyl-ethene-1,2-

dione

The presence of two phenyl groups in the compound indicates a coupling reaction
between two compounds, each of which has a phenyl group similar to anetol. Because the
analysis only uses MS data, the structure of the synthesized compound cannot yet be
determined. Although anethole constitutes a large percentage of anise oil, it is less reactive
compared to phenolic compounds that contain hydroxyl groups. This makes anethole more
difficult to react compared to eugenol, which has successfully synthesized its dimer using

the same process with the biocatalyst enzyme laccase.
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4. Conclusions

The application of computational chemistry in understanding reaction mechanisms of

biochemical processes has emerged as a powerful tool in modern biochemistry. By

combining theoretical modeling with experimental validation, we can deepen our

understanding of complex biological systems and pave the way for innovative applications

in drug discovery, biotechnology, and personalized medicine.
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